

FBR-100AN / FBR-100 Modbus TCP Activation 可支持的 CNC设备和可收集信息

Application Notes : AN20210901XC silex technology, Inc.

目录

1.	概	要	2
2.	М	lodbus TCP Activation 规格	2
3.	支	持的 CNC 设备	2
		BR 转换器 Modbus TCP Activation 的使用	
4	4.1.	启用 Modbus TCP Activation	3
		Modbus TCP 连接配置	
4	4.3.	Modbus TCP 通信	4
	4.4.	Modbus TCP 设置	5
5.	通	过 FBR 转换器 Modbus TCP Activation 可收集的信息	7
6.	操	作注意事项	8
发	行履	历	.10

1. 概要

本文档描述了用于 CNC 机床的协议转换器 "FBR-100AN/FBR-100" 的 Modbus TCP Activation 所支持的 CNC 设备,以及从中可收集的信息。

注) 在本文档中, FBR-100AN/FBR-100 统称为 "FBR 转换器"。

2. Modbus TCP Activation 规格

[Modbus TCP 规格]

- · 运行模式为 Modbus TCP 从站模式。
- · 可从 Modbus TCP 主站的上层软件或设备处收集 CNC 设备的运行信息。
- 1台FBR转換器可以连接1台CNC设备。
- · 可以收集 CNC 设备的程序信息及宏变量和 PMC 信息 1。
- · 与 FBR 转换器的标准功能 MTConnect 通信之间的关系为排他性工作模式。

3. 支持的 CNC 设备

已确认 FBR 转换器 Modbus TCP Activation 与以下 CNC 设备兼容。

制造商名称	CNC 设备 连接方法	机型名称	可通过 FBR 转换器监 视的信息
发那科	LAN	30i-MODEL A, 30i-MODEL B	记载于本资料 "5. 可通过
		31i-MODEL A, 31i-MODEL B, 31i-MODEL A5, 31i-MODEL B5	FBR转换器 Modbus TCP
		32i-MODEL A, 32i-MODEL B	Activation 监视的信息
		35i-MODEL B	
		0i-M/T MODEL F, 0i-M/T MODEL D	
		其他 支持 16i/18i/21i 的 LAN 的型号	

所支持的 CNC 设备/机器及功能,根据 FBR 转换器及其 Activation (选项)种类而异。

		1 100 111110	(110 41.00 1.	
Activation 主要功能	标准	用于 Brother 工业	用于村田机械	OPC UA	Modbus TCP
支持 CNC 设备	发那科	兄弟工业	村田机械机床 &	发那科	发那科
文lf CNC 以由	CNC	CNC	专用系统	CNC	CNC
RS-232C/DPRNT 通信 ²	•	N/A	N/A	N/A	N/A
PATLITE 公司 AirGRID®协同	•	N/A	N/A	N/A	N/A
上层系统通信协议	MTConnect	MTConnect	MTConnect	OPC UA/umati	Modbus TCP

¹ 参照本资料 5.可通过 FBR 转换器 Modbus TCP Activation 监视的信息。

² FBR 转换器的 RS-232C/DPRNT 通信功能可与三菱电机 CNC 设备的 M600/M700/M800 系列兼容。

4. FBR 转换器 Modbus TCP Activation 的使用

4.1. 启用 Modbus TCP Activation

- 本 Activation 功能为付费选项。FBR 转换器主机不附带,请另外购买。
- 请参照 FBR 转换器的"设置指南",并注册登录购买的激活密钥(英文数字字符串)。
- 登录激活密钥后重启 FBR 转换器,以启动 Modbus TCP 设置。

4.2. Modbus TCP 连接配置

FBR 转换器将作为 Modbus TCP 从站工作。请与 Modbus TCP 主站一起使用。

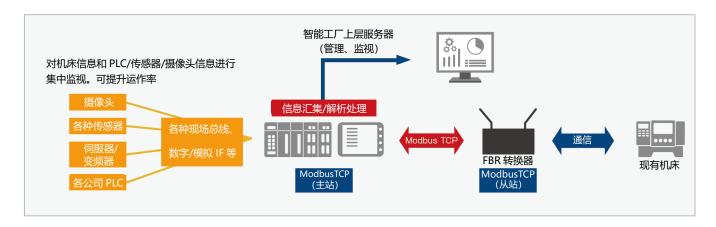
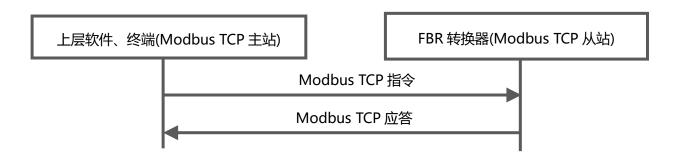



图 1: Modbus TCP 系统配置

4.3. Modbus TCP 通信

按下图的通信时序,FBR 转换器的 Modbus TCP 从站与上层 Modbus TCP 主站进行通信。

- FBR 转换器 Modbus TCP 从站可以与 1 台 Modbus TCP 主站连接。
- Modbus TCP 主站,依据 Modbus 规格能指定的最大读取大小为 125 字。
- 对应的指令仅为 Function 代码 0x04(输入寄存器的读取)。不支持写入其他功能代码。
- 读取数据大小超过 125 字时,响应为异常代码 0x03 (异常数据),写入其他代码时,相应为 0x02(异常 代码)。
- 字符串为 ASCII 码。数值也以 ASCII 码返回,仅对 PMC 信息以数值方式返回。
- 地址是按字(2字节)设置的,但字符串是按字节设置的。字节序为大端序。

【数据设置例】

▶ 字符: abc / 数据: 0x6162 0x6300

▶ 数值: 12345 / 数据: 0x3039

- TCP Keep Alive 在以下设置中有效。本设置不能更改。
 - ▶ 发送次数 (6次)、发送间隔 (10秒)、发送时间 (60秒)

以下为从 CNC 设备的 PMC 收集数据的示例。

FBR 转换器在采集 PMC 区域的数据时,获取 2 个字的值,并在端序转换后传送至 ModbusTCP 主站。

Modbus	TCP 主站		FBR 转换器		CNC 设·	备 PMC
地址	值		0x78563412	—	地址	值
2100	0x7586	将数据传输		从 CNC	A0000	0x12
2102	0x3412	到主站		收集数据	A0001	0x34
					A0002	0x56
					A0003	0x78

4.4. Modbus TCP 设置

[基本设置]

- 从 FBR 转换器的设置网页进行设置。有关详细信息,请参阅 PDF 产品手册。
- 登录 Modbus TCP 通信端口号、以及 CNC 设备的 IP 地址和通信端口号。选择要收集的 CNC 信息,并 单击设置更新按钮。FBR 转换器重启后设置更新将生效。
- FBR 转换器只能注册登录 1 台 CNC 设备。
- Modbus TCP 通信的基本设置有如下三项:
 - ➤ Modbus TCP 端口号:初始值(502)
 - ➤ CNC 的 IP 地址 :初始值(0.0.0.0)
 - ➤ CNC 的端口号 : 初始值(8193)
- 在 CNC 信息收集设置中,可以选择要收集的 CNC 设备信息,设置收集间隔(ms)。

图 2: FBR 转换器 Web 设置画面

[PMC 批处理设置]

- 从 FBR 转换器的设置网页进行设置。有关详细信息,请参阅 PDF 产品手册。
- 通常 FBR 转换器最多可以收集 20 个 PMC 信息, 但通过此设置, 可以批量收集最多 750 个 PMC 信息。
- 指定要收集的 PMC 信息的起始地址和大小,并批量收集 PMC 信息。
- 可收集的最大 PMC 信息大小为 3000 字节 (750 条 x 4 字节)。根据 Modbus TCP 通信规范, 需要 进行 12 次 Modbus TCP 通信,才能收集到 3000 字节 (1500 字)的数据。
- 收集大小必须是4的倍数。如果不能被4整除,则会出现设置错误。
 - 注 1) 本功能在 FBR 转换器监视的 CNC 系统数为 4 个系统以下时可以使用。 如监控到第 5 个系统时,将不能使用。
 - 注 2) 使用此功能时,CNC 设备的 PMC 里有必要先预留"可持续保存收集数据的地址(最多 750 个)的空间"。 请与机床制造商确认能否预留此空间。

以下是 CNC 设备的 PMC 批量采集的示例。

收集 PMC 领域的数据时,FBR 转换器是批量获取数值,并传送给 Modbus TCP 主站。

	Modbu	sT	CP 主站			FBR 转换器		CNC 设备	子 PMC
字节序转	换 无效		字节序转换 有效				—		
地址	值		地址	值	将数据传输	0x03020100	从 CNC	地址	值
7000	0x0302		7000	0x0001	到主站	:	收集数据	A0000	0x00
7001	0x0100		7001	0x0203		0xF7F6F5F4	(批处理)	A0001	0x01
:	:		:	:				A0002	0x02
7122	0xF7F6		7122	0xF4F5			- N+ -	A0003	0x03
7123	0xF5F4		7123	0xF7F6		字节序转换"被	存储在 PMC 的 "	:	:
:	:		:	:	启用,将	将传输转换后的	连续地址	A0247	0xF7
8500	0x0000		8500	0x0000	旭。		"中。		

▶ CNC情报收集设置(PMC 批处理)	
项目名	设置内容
PMC系统编号	1
地址类型	A
开始地址	
尺寸[Byte]	0
数据间隔[ms]	1000
字节序转换	无效~

图 3: FBR 转换器的网页设置画面 (PMC 批处理)

[Modbus TCP 状态]

以下信息可在 FBR 转换器的设置网页进行查看。有关详细信息,也可参阅 PDF 产品手册。

- ▶ CNC 的系列名(版本)
- ▶ PMC 系统数
- ➤ CNC 系统数
- ▶ 状态(与 CNC 之间的通信状态、通信错误时的错误代码及其内容、帮助画面)

5. 通过 FBR 转换器 Modbus TCP Activation 可收集的信息

FBR 转换器连接到本手册中描述的相应 CNC 设备时,可收集以下列表中的信息。

详细内容参照附页

6. 操作注意事项

● 在 FBR 转换器的 CNC 信息收集设置中,对设置为 OFF 的信息的处理方式

FBR 转换器将对 ModbusTCP 服务器返回如下的值:

·报警编号 1~32 : 空 ·PMC1~20 : 0

·上述以外 : UNAVAILABLE

对超范围地址信息的处理方式

FBR 转换器接收到超出范围的地址信息时,将返回异常代码 0x02(非正规地址)。

● 来自于 CNC 设备的信息收集周期

- · 可以以毫秒 (ms) 为单位手动设置。
- · 考虑到 CNC 设备的通信负荷,一般建议将信息收集周期设置为 800ms~1,000ms 左右。
- · 根据要收集的 CNC 信息数、CNC 设备端的通信负荷以及网络环境,可能会存在无法按照所设置的 收集周期进行信息收集的情况(发生通信延迟)。碰到这种情况时,请检查并更改网络环境(例如,尝试使用有线局域网)或减少要收集的信息数量。对于要收集的 CNC 信息,可按照本资料"4.4 Modbus TCP 设置"的记载,对各 CNC 信息分别进行 ON/OFF 设置。

● 时钟设置

当启用 FBR 转换器的 NTP(时钟设置)客户端时,本机的 Modbus TCP 客户端功能将在与 NTP 服务器时钟同步后启动。若在 360 秒以内未能同步时,将不会继续等待与 NTP 服务器的时钟同步,而将直接启动 Modbus TCP 客户端。

● 禁用 Modbus TCP Activation

- 使用 FBR 转換器设置指南中记载的主机 DIP 开关,可实现禁用(主机需要重启)。
- · Activation 禁用后,可通过 FBR 转换器标准规格的 MTConnect 通信。
- · 禁用后再次启用 Activation 时,原 Activation 启用时所设置的内容将维持不变 3。

K

³ 通过 FBR 转换器的 Web 设置画面,可仅对 Activation 时的设置进行初始化。关于初始化的方法,请参照 PDF 手册。

确认 CNC 设备端的通信设置

在对 FBR 转换器设置 CNC 设备的网络信息 (IP 地址、通信端口)时,可通过如下步骤确认所需的 CNC 设备信息。

发那科 CNC 设备

- ▶ 按下 CNC 设备的操作盘[SYSTEM]键→选择软键[Built-in port]→选择软键[common]→确认 IP 地 址及子网掩码。
- 选择软键[FOCAS]→确认 TCP 用端口号。一般为 8193,但也有未登录的情况。
- 注1) 在支持快速以太网板的 CNC 设备中,使用本板卡与 FBR 进行通信时,请选择[Ethernet port]以查看确认 内容,而不是选择上述的[Build-in port]。
- 注2) IP 地址、子网掩码、端口号未登录时,请根据 CNC 设备的手册进行设置。通常情况下,登录后需要先行将 CNC 设备的电源 OFF/ON 一次,以便让设备更新到新设置。

本资料中所记载的公司名称、产品名称等,为各公司的注册商标或商标。

发行履历

Ver.	修订记录	日期
AN20210901	新建	2021/09/01
AN20210901XA	追加了 FBR-100AN 中的 CNC 设备的信息收集设置	2021/9/13
AN20220209XB	追加了 FBR-100 有线 LAN 型号的相关内容 4.3 在 ModbusTCP 通信中追加了从 CNC 设备的 PMC 收集数据的示例 5. 在可通过 FBR 转换器 ModbusTCP Activation 监视的信息(附页)中,追加了在固件 ver.1.4.3 中追加的可监视信息及备注信息 6.在运用时的注意事项中追加了以下内容:	2022/2/9
AN20210901XC	· 4.4 在 Modbus TCP 通信设置中,添加 PMC 批处理设置。 · 在(附件)可通过 FBR 转换器 Modbus TCP Activation 监视 的信息中,增加限制事项	2022/3/22

(附页) 通过FBR-100AN / FBR-100 Modbus TCP Activation可收集的信息

●CNC设备 基本信息地址映射

#	CNC信息	地址	字数(2Byte)	存储的值	收集周期 (初始值)	备注
1	CNC系列	0	64	字符串	仅启动时	CNC设备的型号信息
2	PMC系统数	64	8	字符串 (整数)	仅启动时	PMC的系统数信息
3	CNC系统数	72	8	字符串 (整数)	仅启动时	CNC的系统数信息 (基本上与主轴数相同)
4	状态	80	8	AVAILABLE ^{*1} UNAVAILABLE ^{*2}	800ms	通信可否状态的信息
5	所有伺服/主轴功耗值(0.001kWh)	有伺服/主轴功耗值(0.001kWh) 88	8	字符串 (整数)		全部伺服/主轴的累计值。可作为机床全部耗散 功率的近似值进行监视。可用于CO2排放/碳足 迹的确认用途。
						注: FBR 转换器只针对 30i/0i 系列获取所有伺服/主轴功耗值。

^{*1.} 表示正在从CNC设备收集信息。

●CNC设备 信息地址映射

- ·上述 "CNC设备基本信息地址映射"记载的状态,可在AVAILABLE时收集信息。
- ·可按上述 "CNC设备基本信息地址映射" 记载的CNC系统分别进行收集。

#	CNC信息	地址	字数(2Byte)	存储的值	备注
1	CNC系统1	1000	1500		Modbus TCP主站能指定的最大读取大小为依
2	CNC系统2	2500	1500		据Modbus规格的125字 (无法一次批量读取
З	CNC系统3	4000	1500		1500字)。
4	CNC系统4	5500	1500	参照下述《CNC详细信息》	
- 5	CNC系统5 (不使用时,可用作PMC批处理)	7000	1500		当不使用 CNC 系统 5 时,该系统 5 的地址可 单独为PMC批处理功能使用。可在收集 20个以 上PMC 信息时使用(最多 750 个)。

●CNC设备 详细信息地址映射

- ·可按CNC系统分别收集列表的信息。本列表的地址为CNC系统1时的情况。
- ·各地址为上述"CNC设备信息地址映射"记载的起始地址

• è	·各地址为上述 "CNC设备信息地址映射" 记载的起始地址。										
#	CNC信息	地址	字数(2Byte)	存储的值	收集周期 (初始值)	备注					
1	紧急停止状态	1000	8	ARMED (紧急停止解除状态) TRIGGERD (紧急停止状态)	800ms	紧急停止的状态仅CNC系统1能够取得。CNC系统1以外为UNAVAILABLE。					
2	CNC运行模式	1008	16	MANUAL _ DATA _ INPUT AUTOMATIC EDIT MANUAL	800ms	表示机床目前的运行"模式"。					
3	加工部品数	1024	8	字符串 (整数)	1000ms	表示机床生产的加工工件数。					
4	CNC运行状态	1032	8	READY STOPPED INTERRUPTED ACTIVE	800ms	表示机床目前的运行"状态"。					
5	执行程序序号	1040	8	字符串 (整数)	800ms	表示加工程序的执行时序信息。					
6	主程序名称	1048	64	字符串	2000ms	加工程序的名称。有时可用于在上层监视软件中确认工件种类。 例: //CNC_MEM/USER/PATH1/O4947					
7	主程序注解	1112	64	字符串	2000ms	赋予各加工程序的补充信息。有时可用于在上层监视软件中确认工件种类。 例:XH4947 HD1 18-01-05					
8	刀具编号	1176	8	字符串 (整数)	800ms	安装在机床上的刀具的ID信息。					
9	送料速度调整	1184	8	字符串 (整数)	1000ms	表示机床的动作速度≒效率(%显示)。加工程序的检查及加工条件的调整时,根据实际需要进行设置和变更。					
10	执行程序块	1192	64	字符串	800ms	表示执行中加工程序的各区块信息。用于调试动作/确认等。 例: O4947(XH4947 HD1 18-01-05)					

^{*2.} UNAVAILABLE时,应答例外代码0x06(从站BUSY)。

#	CNC信息	地址	字数(2Byte)	存储的值	收集周期 (初始值)	备注
11	主轴1的工作模式	1256	8		800ms	表示主轴的工作模式。
12	主轴2的工作模式	1264	8	SPINDLE INDEX	800ms	同上
13	主轴3的工作模式	1272	8	CONTOUR	800ms	同上
14	主轴4的工作模式	1280	8		800ms	同上
15	保留区域					
16	快速倍率	1300	8	字符串(整数)	1000ms	表示机床的动作速度=效率(%显示)。加工程序的检查及加工条件的调整时,根据实际需要进行设置和变更。
17	主轴调整率	1308	8	字符串 (整数)	1000ms	同上
18	有效轴名称	1316	16	轴名称字符串 (X1 Z1 C1等)	5000ms	机床当前可使用的轴信息。直线轴 (X,Y,Z,U,V,W)、旋转轴(A,B,C),合计9个)
19	试运行	1332	8	ENABLED DISABLED	800ms	在NC程序的动作测试时使用的模式。可在上层监视软件中对机床的实际运作时间进行筛选时使用。 注: 试运行只针对 30i/0i 系列进行收集
20	切削进给	1340	8	ENABLED DISABLED	800ms	表示NC程序的切削进给中指示。可在上层监视软件中对机床的实际运作时间进行筛选时使用。 注: 切削进给只针对 30i/0i 系列进行收集
21	M00	1348	8	ENABLED DISABLED	800ms	可在上层监视软件中对机床的实际运行时间进行筛选时使用。在加工过程中停止机械以确认尺寸或确认刀具状态等时使用。 注: M00只针对 30i/0i 系列进行收集
22	M01	1356	8	ENABLED DISABLED	800ms	可在上层监视软件中对机床的实际运行时间进行筛选时使用。用于第1个工件确认之后,后面无需确认时的情况。 注:M01只针对 30i/0i 系列进行收集
	周期时间(秒)	1364	8	字符串(小数)	800ms	从工件切削开始到结束的时间(自动运行1次所需要的时间)。可用于优化制造时间/查找工作变化的原因。
	保留区域					
	主轴1的负载(%)	1400		字符串(小数)	800ms	-
	主轴1的速度(旋转/分)	1408		字符串 (整数)	800ms	表示各主轴的负荷与切削转矩信息或转速。可用
	主轴2的负载(%)	1416 1424		字符串(小数)字符串(整数)	800ms 800ms	作加工条件设置或刀具寿命推测的参考值。根据各工供研究
	主轴2的速度(旋转/分) 主轴3的负载(%)	1424		字符串(全数)	800ms	据各工件种类/硬度,最佳值会发生变化。
	主轴3的速度(旋转/分)	1440		字符串(外数)	800ms	注:对于没有位置编码器的机器,可能需要更
	主轴4的负载(%)	1448		字符串(金数)	800ms	改NC参数(将 No.3118的bit改为1)
	主轴4的速度(旋转/分)	1456		字符串 (整数)	800ms	-
	工和中的速度(旋杆/ / / / / 主轴1的主轴绝缘电阻值 (MΩ)	1464		字符串(小数)	5000ms	可将主轴电机的绝缘电阻值用作为预防保护的
	主轴2的主轴绝缘电阻值 (MΩ)	1472		字符串 (小数)	5000ms	参考值。通常在100前后~0的范围内变动(10以下,建议更换)。按下CNC设备的紧急停止
35	主轴3的主轴绝缘电阻值 (MΩ)	1480	8	字符串 (小数)	5000ms	按钮后,信息会立即更新。
36	主轴4的主轴绝缘电阻值 (MΩ)	1488	8	字符串 (小数)	5000ms	注: 主轴绝缘电阻值只针对 30i/0i 系列进行收集

					收集周期	
#	CNC信息	地址	字数(2Byte)	存储的值	(初始值)	备注
37	保留区域					
38	加料速度 (mm/秒)	1500	8	字符串 (数值)	800ms	进给轴的移动速度
39	X轴的绝对定位 (mm)	1508	8	字符串 (小数)	800ms	
40	X轴的动轴负载 (%)	1516	8	字符串 (小数)	800ms	
41	X轴的动轴负载电流值 (%)	1524	8	字符串 (小数)	800ms	
42	X轴的动轴负载电流值(安培)	1532	8	字符串 (小数)	800ms	
43	Y轴的绝对定位 (mm)	1540	8	字符串 (小数)	800ms	
44	Y轴的动轴负载 (%)	1548	8	字符串 (小数)	800ms	
45	Y轴的动轴负载电流值 (%)	1556	8	字符串 (小数)	800ms	
46	Y轴的动轴负载电流值(安培)	1564	8	字符串 (小数)	800ms	
47	Z轴的绝对定位 (mm)	1572	8	字符串 (小数)	800ms	
48	Z轴的动轴负载 (%)	1580	8	字符串 (小数)	800ms	机床的各种轴信息。根据轴名取得。关于轴
49	Z轴的动轴负载电流值 (%)	1588	8	字符串 (小数)	800ms	名,请参照有效轴名称
50	Z轴的动轴负载电流值 (安培)	1596	8	字符串 (小数)	800ms	 -注: 动轴负载电流值只针对 30i/0i 系列进行收
	U轴的绝对定位 (mm)	1604	8	字符串 (小数)	800ms	集
52	U轴的动轴负载 (%)	1612	8	字符串 (小数)	800ms	
53	U轴的动轴负载电流值 (%)	1620	8	字符串 (小数)	800ms	存在轴名称X,Y,Z,U,V,W,A,B,C以外的轴时,将
54	U轴的动轴负载电流值(安培)	1628	8	字符串 (小数)	800ms	按照左述轴名称的顺序,将值存储在未使用的
55	V轴的绝对定位 (mm)	1636	8	字符串 (小数)	800ms	轴的区域中。 例:
56	V轴的动轴负载 (%)	1644	8	字符串 (小数)	800ms	1 ¹
57	V轴的动轴负载电流值 (%)	1652	8	字符串 (小数)	800ms	存储T轴的值(Z轴为未使用轴)。
58	V轴的动轴负载电流值(安培)	1660	8	字符串 (小数)	800ms	②CNC的轴名称为A,B,T时,将在X轴的区域中
59	W轴的绝对定位 (mm)	1668	8	字符串 (小数)	800ms	存储T轴的值(X轴为未使用轴)。
60	W轴的动轴负载 (%)	1676	8	字符串 (小数)	800ms	
61	W轴的动轴负载电流值 (%)	1684	8	字符串 (小数)	800ms	 各轴负荷电流值≒负荷信息可用作为加工条件的
62	W轴的动轴负载电流值(安培)	1692	8	字符串 (小数)	800ms	设置或刀具寿命推测的参考值(建议将负荷电流
63	A轴的绝对定位 (mm)	1700	8	字符串 (小数)	800ms	值信息用作为其精度上、移动平均等的"倾向
64	A轴的动轴负载 (%)	1708	8	字符串 (小数)	800ms	值")。根据各工件种类/硬度,最佳值会发生
65	A轴的动轴负载电流值 (%)	1716	8	字符串 (小数)	800ms	变化。
66	A轴的动轴负载电流值 (安培)	1724	8	字符串 (小数)	800ms	
67	B轴的绝对定位 (mm)	1732	8	字符串 (小数)	800ms	
68	B轴的动轴负载 (%)	1740	8	字符串 (小数)	800ms	
69	B轴的动轴负载电流值 (%)	1748		字符串 (小数)	800ms	
	B轴的动轴负载电流值 (安培)	1756		字符串 (小数)	800ms	
71	C轴的绝对定位 (mm)	1764	8	字符串 (小数)	800ms	
	C轴的动轴负载 (%)	1772		字符串 (小数)	800ms	
	C轴的动轴负载电流值 (%)	1780		字符串 (小数)	800ms	
	C轴的动轴负载电流值 (安培)	1788	8	字符串 (小数)	800ms	
75	保留区域					
76	告警编号1~告警编号32 ^{*3}	1800 ~ 2048	8	字符串 "SW100" 等	800ms	报警和操作员信息同时发生时,两者都将存储 至报警编号中 ^{*4} 。操作信息为不依赖于CNC系 统的信息,因此,将仅在CNC系统1中存储。
77	保留区域					
78	PMC1 ~ PMC20	2100 ~ 2138	2	数值	1000ms	最多可以注册 20 个 PMC。 请根据每个机床制造商和用户的需要进行设置。

#	CNC信息	地址	字数(2Byte)	存储的值	收集周期 (初始值)	备注
79	保留区域				(1/3/4121)	
80	Macro1 ~ Macro10	2200 ~ 2272	8	字符串 (小数)	1000ms	最多可以注册 10 个宏。 请根据每个机床制造 商和用户的需要进行设置。
81	X轴的动轴绝缘电阻值 (MΩ)	2280	8	字符串 (小数)	5000ms	根据轴名取得 关于轴名,请参照有效轴名称 注: 动轴绝缘电阻值只针对 30i/0i 系列进行收 集
82	Y轴的动轴绝缘电阻值 (MΩ)	2288	8	字符串 (小数)	5000ms	
83	Z轴的动轴绝缘电阻值 (MΩ)	2296	8	字符串 (小数)	5000ms	
84	U轴的动轴绝缘电阻值 (MΩ)	2304	8	字符串 (小数)	5000ms	
85	V轴的动轴绝缘电阻值 (MΩ)	2312	8	字符串 (小数)	5000ms	可将各轴电机的绝缘电阻值或轴移动距离用作为预防保护的参考值。绝缘电阻值通常在100前后~0的范围内变动(10以下,建议更换)。按下CNC设备的紧急停止按钮后,信息会立即更新。
86	W轴的动轴绝缘电阻值 (MΩ)	2320	8	字符串 (小数)	5000ms	
87	A轴的动轴绝缘电阻值 (MΩ)	2328	8	字符串 (小数)	5000ms	
88	B轴的动轴绝缘电阻值 (MΩ)	2336	8	字符串 (小数)	5000ms	
89	C轴的动轴绝缘电阻值 (MΩ)	2344	8	字符串 (小数)	5000ms	
90	X轴的全轴移动距离	2352	8	字符串 (整数)	800ms	
91	Y轴的全轴移动距离	2360	8	字符串 (整数)	800ms	
92	Z轴的全轴移动距离	2368	8	字符串 (整数)	800ms	
93	U轴的全轴移动距离	2376	8	字符串 (整数)	800ms	
94	V轴的全轴移动距离	2384	8	字符串 (整数)	800ms	
95	W轴的全轴移动距离	2392	8	字符串 (整数)	800ms	
96	A轴的全轴移动距离	2400	8	字符串 (整数)	800ms	
97	B轴的全轴移动距离	2408	8	字符串 (整数)	800ms	
98	C轴的全轴移动距离	2416	8	字符串 (整数)	800ms	
99	X轴的伺服调整后实速度 (旋转/分)	2424	8	字符串 (整数)	800ms	显示伺服放大器调整后的各轴伺服电机的实际速度。通过FBR转换器获取的主轴速度(转速)和负载/负载电流值,以及通过其他方法获取的伺服器的位置偏差,可以作为分析异常的参考值。
100	Y轴的伺服调整后实速度 (旋转/分)	2432	8	字符串 (整数)	800ms	
101	Z轴的伺服调整后实速度 (旋转/分)	2440	8	字符串 (整数)	800ms	
102	U轴的伺服调整后实速度 (旋转/分)	2448	8	字符串 (整数)	800ms	
103	V轴的伺服调整后实速度 (旋转/分)	2456	8	字符串 (整数)	800ms	
104	W轴的伺服调整后实速度 (旋转/分)	2464	8	字符串 (整数)	800ms	
105	A轴的伺服调整后实速度 (旋转/分)	2472	8	字符串 (整数)	800ms	
106	B轴的伺服调整后实速度 (旋转/分)	2480	8	字符串 (整数)	800ms	
107	C轴的伺服调整后实速度 (旋转/分)	2488	8	字符串 (整数)	800ms	

^[107] C轴的伺服调整后实速度(旋转/分) 24 *3. 关于报警的详细内容,请咨询机床厂家或CNC设备厂家。

例) 报警为『SW100, PW100』、操作信息为『1000』时

・报警编号1: SW100 ・报警编号2: PW100 ・报警编号3: 1000

^{*4.} 报警和操作信息同时发生时,报警信息如下所示:

- ●FBR转换器中的CNC设备的信息收集设置。
 - ·从FBR转换器的主机Web设置画面进行设置。也可查看产品PDF手册。
 - ·关于本资料记载列表中的PMC信息(1~20)及Macro信息(1~10)的收集,要从FBR转换器的主机Web设置画面手动进行系统编号、地址信息的设置。

FBR转换器 Modbus TCP Web设置画面